Cauchy Stress Tensor. By Sanpaz (Own work) CC BY-SA 3.0 or GFDL], via Wikimedia Commons
As a function of seismic velocities and density: \(E = \rho \frac{V_s^2(3V_p^2-4V_s^2)}{V_p^2 - V_s^2}\) As a fonction of P and S Impedances: \(E\rho = \frac{I_s^2(3I_p^2-4I_s^2)}{I_p^2 - I_s^2}\)
As a function of seismic velocities and impedances \(\nu = \frac{1}{2} \frac{\frac{V_p^2}{V_s^2} - 2 } {\frac{V_p^2}{V_s^2} - 1 } = \frac{1}{2} \frac{\frac{I_p^2}{I_s^2} - 2 } {\frac{I_p^2}{I_s^2} - 1 }\)
In the anisotropic case, the relation between stress and strain is a 6 by 6 tensor. \[\begin{pmatrix} \sigma_{1}\\\ \sigma_{2}\\\ \sigma_{3}\\\ \sigma_{4}\\\ \sigma_{5}\\\ \sigma_{6}\\\ \end{pmatrix} = \begin{pmatrix} c_{11}&c_{12}&c_{13}&c_{14}&c_{15}&c_{16}\\\ c_{21}&c_{22}&c_{23}&c_{24}&c_{25}&c_{26}\\\ c_{31}&c_{32}&c_{33}&c_{34}&c_{35}&c_{36}\\\ c_{41}&c_{42}&c_{43}&c_{44}&c_{45}&c_{46}\\\ c_{51}&c_{52}&c_{53}&c_{54}&c_{55}&c_{56}\\\ c_{61}&c_{62}&c_{63}&c_{64}&c_{65}&c_{66}\\\ \end{pmatrix} . \begin{pmatrix} \varepsilon_{1}\\\ \varepsilon_{2}\\\ \varepsilon_{3}\\\ \varepsilon_{4}\\\ \varepsilon_{5}\\\ \varepsilon_{6}\\\ \end{pmatrix}\]
where \[\begin{pmatrix} \sigma_{1}\\\ \sigma_{2}\\\ \sigma_{3}\\\ \sigma_{4}\\\ \sigma_{5}\\\ \sigma_{6}\\\ \end{pmatrix} = \begin{pmatrix} \sigma_{11}\\\ \sigma_{22}\\\ \sigma_{33}\\\ \sigma_{23}\\\ \sigma_{13}\\\ \sigma_{12}\\\ \end{pmatrix} , and, \begin{pmatrix} \varepsilon_{1}\\\ \varepsilon_{2}\\\ \varepsilon_{3}\\\ \varepsilon_{4}\\\ \varepsilon_{5}\\\ \varepsilon_{6}\\\ \end{pmatrix} = \begin{pmatrix} \varepsilon_{11}\\\ \varepsilon_{22}\\\ \varepsilon_{33}\\\ \varepsilon_{23}\\\ \varepsilon_{13}\\\ \varepsilon_{12}\\\ \end{pmatrix}\]
In the isotropic case, the relation between stress and strain depends only on 2 parameters : \(c_{11}\) and \(c_{44}\). The isotropic solid has no preferred direction regarding elastic properties. \[C= \begin{pmatrix} c_{11}&c_{11}-2c_{44}&c_{11}-2c_{44}&0&0&0\\\ c_{11}-2c_{44}&c_{11}&c_{11}-2c_{44}&0&0&0\\\ c_{11}-2c_{44}&c_{11}-2c_{44}&c_{11}&0&0&0\\\ 0&0&0&c_{44}&0&0\\\ 0&0&0&0&c_{44}&0\\\ 0&0&0&0&0&c_{44}\\\ \end{pmatrix}\] \[C= \begin{pmatrix} \lambda + 2\mu & \lambda & \lambda&0&0&0\\\ \lambda & \lambda + 2\mu & \lambda&0&0&0\\\ \lambda & \lambda & \lambda + 2\mu &0&0&0\\\ 0&0&0&\mu&0&0\\\ 0&0&0&0&\mu&0\\\ 0&0&0&0&0&\mu\\\ \end{pmatrix}\]
Material with a vertical axis of symmetry (layer cake), 5 parameters in the stiffness matrix. \[C= \begin{pmatrix} c_{11}&c_{11}-2c_{66}&c_{13}&0&0&0\\\ c_{11}-2c_{66}&c_{11}&c_{13}&0&0&0\\\ c_{13}&c_{13}&c_{33}&0&0&0\\\ 0&0&0&c_{44}&0&0\\\ 0&0&0&0&c_{44}&0\\\ 0&0&0&0&0&c_{66}\\\ \end{pmatrix}\] \[V_{PH} = \sqrt{\frac{c_{11}}{\rho}},\quad V_{PV} = \sqrt{\frac{c_{33}}{\rho}},\quad V_{SH} = \sqrt{\frac{c_{44}}{\rho}},\quad V_{SV} = \sqrt{\frac{c_{66}}{\rho}};\]
Material with an horizontal axis of symmetry, this is the transposed of the VTI case, 5 parameters. \[C= \begin{pmatrix} c_{11}&c_{13}&c_{13}&0&0&0\\\ c_{13}&c_{33}&c_{33}-2c_{44}&0&0&0\\\ c_{13}&c_{33}-2c_{44}&c_{33}&0&0&0\\\ 0&0&0&c_{44}&0&0\\\ 0&0&0&0&c_{55}&0\\\ 0&0&0&0&0&c_{55}\\\ \end{pmatrix}\] \[V_{PH} = \sqrt{\frac{c_{11}}{\rho}},\quad V_{PV} = \sqrt{\frac{c_{33}}{\rho}},\quad V_{SH} = \sqrt{\frac{c_{44}}{\rho}},\quad V_{SV} = \sqrt{\frac{c_{55}}{\rho}};\]
Material with three mutually orthogonal axis of symmetry : 9 parameters in the stiffness matrix. \[C= \begin{pmatrix} c_{11}&c_{12}&c_{13}&0&0&0\\\ c_{12}&c_{22}&c_{23}&0&0&0\\\ c_{13}&c_{23}&c_{33}&0&0&0\\\ 0&0&0&c_{44}&0&0\\\ 0&0&0&0&c_{55}&0\\\ 0&0&0&0&0&c_{66}\\\ \end{pmatrix}\] \[\begin{aligned} V_{PH1} = \sqrt{\frac{c_{11}}{\rho}},\quad V_{PH2} = \sqrt{\frac{c_{22}}{\rho}},\quad V_{PV} = \sqrt{\frac{c_{33}}{\rho}}; \end{aligned}\] \[\begin{aligned} V_{SH1} = \sqrt{\frac{c_{44}}{\rho}},\quad V_{SH2} = \sqrt{\frac{c_{55}}{\rho}},\quad V_{SV} = \sqrt{\frac{c_{66}}{\rho}}; \end{aligned}\]
Olivier SEISMIC_RESERVOIR
anisotropy rock physics elasticity modeling