Rock Physics

P-wave anisotropy : Thomsen & Tsvankin Parameters

A little primer on the connection between elasticity and seismic velocities.

The weak anisotropy developed by Thomsen for the VTI case was extended to the Orthorhombic case by Tsanvskin 1.

Geophone Response Thomsen Parameters in different symmetries.

Velocities in VTI

Reference velocities and equivalences: (cf. Thomsen 1986 2.) \[V_{P0} = V_{PV} = \sqrt{\frac{c_{33}}{\rho}},\quad V_{S0} = V_{SH1} = V_{SH2} = \sqrt{\frac{c_{55}}{\rho}},\]

Velocity as a function of incidence angle \(\theta\) \[\begin{aligned} V_P(\theta) = V_{P0}\bigg[1+\delta\sin^2 \theta \cos^2\theta + \epsilon \sin^4 \theta \bigg]\\ V_{SV}(\theta) = V_{S0}\bigg[ 1 +\frac{V_{P0}^ 2}{V_{S0}^2}(\epsilon - \delta) \sin^2 \theta \cos^2 \theta \bigg]\\ V_{SH}(\theta) = V_{S0}\bigg[ 1 + \gamma \sin^2\theta \bigg]\\ \end{aligned}\]

Velocities in HTI

Reference velocities and equivalences: (cf. Ruger 1997 3.) \[V_{P0} = V_{PV} = V_{PH2} = \sqrt{\frac{c_{33}}{\rho}},\quad\]

Velocity as a function of incidence angle \(\theta\) \[\begin{aligned} V_P(\theta,\phi) = V_{P0}\bigg[1+\delta^{(V)} \sin^2 \theta \cos^2 \phi + (\epsilon^{(V)} - \delta^{(V)}) \sin^4 \theta\cos^4 \phi \bigg]\\ \end{aligned}\]

Velocities in Orthorhombic Medium

Reference velocities and equivalences: (cf. Ruger 1998 4.) \[V_{P0} = V_{PV} = \sqrt{\frac{c_{33}}{\rho}},\quad\]

Velocity as a function of incidence angle \(\theta\) \[\begin{aligned} V_P(\theta,\phi) = V_{P0}\bigg[1+\delta(\psi)\sin^2 \theta \cos^2\theta + \epsilon(\phi) \sin^4 \theta \bigg]\\ \delta(\phi) = \delta^{(1)}\sin^2\phi + \delta^{(2)} \cos^2 \phi \\ \epsilon(\phi) = \epsilon^{(1)} \sin^4 \phi + \epsilon^{(2)} \cos^4 \phi + (2\epsilon^{(2)} + \delta^{(3)})\sin^2 \phi \cos^2 \phi \end{aligned}\]

References and Further Reading

1: Tsvankin 1997 Ilya Tsvankin. Anisotropic parameters and pwave velocity for orthorhombic media. GEOPHYSICS, 62(4) :1292–1309, 1997. doi :10.1190/1.1444231. URL

2: Thomsen 1986 Leon Thomsen. Weak elastic anisotropy. GEOPHYSICS, 51 (10) :1954–1966, 1986. doi : 10.1190/1.1442051. URL

3: Rüger 1997 Andreas Rüger. Pwave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry. GEOPHYSICS, 62(3) :713–722, 1997. doi : 10.1190/1.1444181. URL

4: Rüger 1998 Andreas Rüger. Variation of p-wave reflectivity with offset and azimuth in anisotropic media. GEOPHYSICS, 63(3) :935–947, 1998. doi :10.1190/1.1444405. URL

SEISMIC_RESERVOIR
anisotropy rock physics elasticity modeling